Optimization of Ni-Co-Fe-Based Catalysts for Oxygen Evolution Reaction by Surface and Relaxation Phenomena Analysis

ChemSusChem. 2021 Apr 9;14(7):1737-1746. doi: 10.1002/cssc.202002946. Epub 2021 Feb 24.

Abstract

Trimetallic double hydroxide NiFeCo-OH is prepared by coprecipitation, from which three different catalysts are fabricated by different heat treatments, all at 350 °C maximum temperature. Among the prepared catalysts, the one prepared at a heating and cooling rate of 2 °C min-1 in N2 atmosphere (designated NiFeCo-N2 -2 °C) displays the best catalytic properties after stability testing, exhibiting a high current density (9.06 mA cm-2 at 320 mV), low Tafel slope (72.9 mV dec-1 ), good stability (over 20 h), high turnover frequency (0.304 s-1 ), and high mass activity (46.52 A g-1 at 320 mV). Stability tests reveal that the hydroxide phase is less suitable for long-term use than catalysts with an oxide phase. Two causes are identified for the loss of stability in the hydroxide phase: a) Modeling of the distribution function of relaxation times (DFRT) reveals the increase in resistance contributed by various relaxation processes; b) density functional theory (DFT) surface energy calculations reveal that the higher surface energy of the hydroxide-phase catalyst impairs the stability. These findings represent a new strategy to optimize catalysts for water splitting.

Keywords: density functional calculations; electrocatalysis; hydroxides; porous materials; relaxation processes.