Effect of the hydroxamate group in the antitumoral activity and toxicity toward normal cells of new copper(II) complexes

Biometals. 2021 Apr;34(2):229-244. doi: 10.1007/s10534-020-00275-9. Epub 2021 Feb 9.

Abstract

The synthesis, physico-chemical characterization and cytotoxicity of four copper(II) coordination complexes, i.e. [Cu(HBPA)Cl2] (1), [Cu(BHA)2] (2), [Cu(HBPA)(BHA)Cl] CH3OH (3) and [Cu(HBPA)2]Cl2·4H2O (4), are reported. HBPA is the tridentate ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)amine and HBHA is the benzohydroxamic acid. The reaction between the HBHA and CuCl2.2H2O has resulted in the new complex (2) and the reaction between complex (1) and HBHA has resulted in the new complex (3). X-ray diffraction studies for complex (3) indicated the effective coordination of HBHA as BHA-. Their cytotoxicity was evaluated against three human tumoral cell lines (Colo-205, NCI-H460 and U937) and PBMC (peripheral blood mononuclear cells), using the MTT cytotoxic assay. The results toward PBMC reveal that the new copper(II) complex (2) presents lower toxicity toward normal cells. Furthermore, complex (2) presents IC50 values lower than cisplatin toward NCI-H460 and the best selectivity index obtained towards NCI-H460 (SI = 2.2) and U937 cell lines (SI = 2.0), as a result of the presence of two molecules of HBHA in its structure. Complex (3) presents IC50 values lower than cisplatin toward NCI-H460, Colo-205 and comparable to cisplatin toward U937. The evaluation of the cell death type promoted by complexes (2) and (4) was investigated toward NCI-H460 revealing better results than the standard drug cisplatin, according to the Annexin V and propidium iodide (PI) labeling experiment. Based on the studies here performed, HBHA seems to be related to lower toxicity toward PBMC and HBPA is improving directly the cytotoxity.

Keywords: Antitumor activity; Apoptosis; Benzo hydroxamic acid (HBHA); Copper(II) complex; PBMC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry
  • Coordination Complexes / pharmacology*
  • Copper / chemistry
  • Copper / pharmacology*
  • Drug Screening Assays, Antitumor
  • Humans
  • Hydroxamic Acids / chemistry
  • Hydroxamic Acids / pharmacology*

Substances

  • Antineoplastic Agents
  • Coordination Complexes
  • Hydroxamic Acids
  • Copper
  • benzohydroxamic acid

Grants and funding