One-pot construction of acid phosphatase and hemin loaded multifunctional metal-organic framework nanosheets for ratiometric fluorescent arsenate sensing

J Hazard Mater. 2021 Jun 15:412:124407. doi: 10.1016/j.jhazmat.2020.124407. Epub 2020 Oct 29.

Abstract

Exploring high-performance sensors for toxic arsenic detection is highly desired because of its great threat to the environment. Herein, we report a ratiometric fluorescent biosensor based on acid phosphatase and hemin loaded multifunctional Zn-based metal-organic framework (ACP/hemin@Zn-MOF) for high-performance arsenate (As(Ⅴ)) sensing. ACP/hemin@Zn-MOF is constructed by self-assembly, where hemin exhibits peroxidase-like activity and 2-aminoterephthalic acid ligand endows ACP/hemin@Zn-MOF with an intrinsic fluorescence (452 nm). When ACP/hemin@Zn-MOF catalyzes the oxidation of o-phenylenediamine (OPD), fluorescent 2,3-diaminophenazine (DAP) with an emission signal (564 nm) is produced and weakens ACP/hemin@Zn-MOF intrinsic fluorescence (452 nm) due to inner filter effect; after adding ascorbic acid 2-phosphate (AAP), ACP can hydrolyze AAP and produce ascorbic acid, which competitively suppresses the oxidation of OPD, resulting in the decrease of DAP signal (564 nm) and the recovery of ACP/hemin@Zn-MOF signal (452 nm); when As(V) is added, it irreversibly poisons ACP against hydrolyzing AAP, and the fluorescence signal at 564 nm recovers and the one at 452 nm is suppressed again. High-sensitivity and high-selectivity detection of As(V) (3.33-300 μg L-1) is realized, with a detection limit of 1.05 μg L-1. The biosensor was also successfully employed to detect total arsenic and As(V) in rice.

Keywords: Acid phosphatase; Arsenate; Hemin; Nanozyme; Ratiometric fluorescent detection.

Publication types

  • Research Support, Non-U.S. Gov't