Phase Formation and Thermal Stability of Reactively Sputtered YTaO4-ZrO2 Coatings

Materials (Basel). 2021 Feb 2;14(3):692. doi: 10.3390/ma14030692.

Abstract

Y(1-x)/2Ta(1-x)/2ZrxO2 coatings with 0 to 44 mol% ZrO2 were synthesized by sputtering. Phase-pure M'-YTaO4 coatings were obtained at a substrate temperature of 900 °C. Alloying with ZrO2 resulted in the growth of M' along with t-Zr(Y,Ta)O2 for ≤15 mol%, while for ≥28 mol%, ZrO2 X-ray diffraction (XRD) phase-pure metastable t was formed, which may be caused by small grain sizes and/or kinetic limitations. The former phase region transformed into M' and M and the latter to an M' + t and M + t phase region upon annealing to 1300 and 1650 °C, respectively. In addition to M and t, T-YTa(Zr)O4 phase fractions were observed at room temperature for ZrO2 contents ≥28 mol% after annealing to 1650 °C. T phase fractions increased during in situ heating XRD at 80 °C. At 1650 °C, a reaction with the α-Al2O3 substrate resulted in the formation of AlTaO4 and an Al-Ta-Y-O compound.

Keywords: PVD; phase stability; thermal barrier coatings; yttrium tantalate; zirconia.