Mechanical and Material Properties of Mortar Reinforced with Glass Fiber: An Experimental Study

Materials (Basel). 2021 Feb 2;14(3):698. doi: 10.3390/ma14030698.

Abstract

The progressive increase in the amount of glass waste produced each year in the world made it necessary to start the search for new recycling methods. This work summarizes the experimental results of the study on mortar samples containing dispersed reinforcement in the form of glass fibers, fully made from melted glass waste (bottles). Mortar mixes were prepared according to a new, laboratory-calculated recipe containing glass fibers, granite as aggregate, polycarboxylate-based deflocculant and Portland cement (52.5 MPa). This experimental work involved three different contents (600, 1200, and 1800 g/m3) of recycled glass fibers. After 28 days, the mechanical properties such as compressive, flexural, and split tensile strength were characterized. Furthermore, the modulus of elasticity and Poisson coefficient were determined. The initial and final setting times, porosity, and pH of the blends were measured. Images of optical microscopy (OM) were taken. The addition of glass fibers improves the properties of mortar. The highest values of mechanical properties were obtained for concrete with the addition of 1800 g/m3 of glass fibers (31.5% increase in compressive strength, 29.9% increase in flexural strength, and 97.6% increase in split tensile strength compared to base sample).

Keywords: compressive strength; eco-efficient mixture; fiber-reinforced mortar; flexural strength; glass fiber; glass waste; mechanical properties; recycling; split tensile strength.