Influence of Gas Annealing on Sensitivity of AlN/4H-Sic-Based Temperature Sensors

Materials (Basel). 2021 Feb 2;14(3):683. doi: 10.3390/ma14030683.

Abstract

In this study, the physical and electrical characteristics of an AlN/4H-SiC Schottky barrier diode-based temperature sensor annealed in various gas atmospheres were investigated. An aluminum nitride (AlN) thin film was deposited on a 4H-SiC substrate via radio-frequency sputtering followed by annealing in N2 or O2 gas. The chemical composition of the film was determined by X-ray photoelectron spectroscopy (XPS) before and after annealing, and its electrical properties were evaluated by plotting a current-voltage (I-V) curve. The voltage-temperature (V-T) characteristics of the sensor were extracted from the current-voltage-temperature (I-V-T) plots constructed in the temperature range between 475 and 300 K in steps of 25 K. Sensitivities of 9.77, 9.37, and 2.16 mV/K were obtained for the as-grown, N2-annealed, and O2-annealed samples, respectively.

Keywords: 4H-SiC; AlN; Schottky barrier diodes; XPS; temperature sensor.