Synthesis, structure and photophysical properties of two tetranuclear copper(I) iodide complexes based on acetylpyridine and diphosphine mixed ligands

Acta Crystallogr C Struct Chem. 2021 Feb 1;77(Pt 2):61-67. doi: 10.1107/S2053229620016745. Epub 2021 Jan 6.

Abstract

Two copper(I) iodide tetramers, namely, [μ2-1,3-bis(diphenylphosphanyl)propane-κ2P:P']di-μ3-iodido-di-μ2-iodido-[1-(pyridin-3-yl)ethan-1-one-κN]tetracopper(I) dichloromethane disolvate, [Cu4I4(C6H7NO)2(C27H26P2)2]·2CH2Cl2 (CuL3), and [μ2-1,3-bis(diphenylphosphanyl)propane-κ2P:P']di-μ3-iodido-di-μ2-iodido-[1-(pyridin-4-yl)ethan-1-one-κN]tetracopper(I), [Cu4I4(C6H7NO)2(C27H26P2)2] (CuL4), have been synthesized from reactions of CuI, 1,3-bis(diphenylphosphanyl)propane (dppp) and 3- or 4-acetylpyridine (3/4-acepy). The complexes were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction (XRD), powder XRD and photoluminescence spectroscopy. Both complexes possess a stair-step [Cu4I4] cluster structure with a crystallographic inversion centre located in the middle of a Cu2I2 ring (Z' = 1/2). The dppp ligands each adopt a bidentate coordination mode that bridges two CuI centres on one side of the [Cu4I4] cluster and the acepy ligands act as terminal ligands. The solid-state samples of similar complexes show highly efficiency thermally activated delayed fluorescence (TADF) at room temperature. At ambient temperature, both CuL3 and CuL4 exhibit photoluminescence, with a maximum emission in the region 560-580 nm and with short emissive decay times, but only phosphorescence was observed at 77 K. The narrow gaps between the higher lying singlet state and the triplet state, ΔE(S1 - T1), also confirm the presence of TADF. Structure analysis and consideration of photoluminescence indicates that the position of the acetyl group on the heterocyclic ligand has an obvious influence on the structural arrangement, on intermolecular interactions and on the observed photophysical properties.

Keywords: TADF; acetylpyridine; bis(diphenyphosphanyl)propane; cluster; copper(I) iodide; crystal structure; photoluminescence; tetramer; thermally activated delayed fluorescence.