Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau

Glob Chang Biol. 2021 May;27(9):1942-1951. doi: 10.1111/gcb.15542. Epub 2021 Feb 20.

Abstract

Vegetation productivity first increases and then decreases with temperature; and temperature corresponding to the maximum productivity is called optimal temperature (Topt ). In this study, we used satellite derived near-infrared reflectance of vegetation (NIRv ) data to map Topt of vegetation productivity at the spatial resolution of 0.1° on the Tibetan Plateau (TP), one of most sensitive regions in the climate system. The average Topt of non-forest vegetation on the TP is about 14.7°C, significantly lower than the Topt value used in current ecosystem models. A remarkable geographical heterogeneity in Topt is observed over the TP. Higher Topt values generally appear in the north-eastern TP, while the south-western TP has relatively lower Topt (<10°C), in line with the difference of climate conditions and topography across different regions. Spatially, Topt tends to decrease by 0.41°C per 100 m increase in elevation, faster than the elevational elapse rate of growing season temperature, implying a potential CO2 regulation of Topt in addition to temperature acclimation. Topt increases by 0.66°C for each 1°C of rising mean annual temperature as a result of vegetation acclimation to climate change. However, at least at the decadal scale, there is no significant change in Topt between 2000s and 2010s, suggesting that the Topt climate acclimation may not keep up with the warming rate. Finally, future (2091-2100) warming could be close to and even surpass Topt on the TP under different RCP scenarios without considering potential climate acclimation. Our analyses imply that the temperature tipping point when the impact of future warming shifts from positive to negative on the TP is greatly overestimated by current vegetation models. Future research needs to include varying thermal and CO2 acclimation effects on Topt across different time scales in vegetation models.

Keywords: Tibetan Plateau; elevational dependence; geographical heterogeneity; near-infrared reflectance of vegetation; optimal temperature; thermal acclimation.

MeSH terms

  • Climate Change*
  • Ecosystem*
  • Seasons
  • Temperature
  • Tibet