Real-time breath ammonia measurement using a novel cuprous bromide sensor device in patients with chronic liver disease: a feasibility and pilot study

J Breath Res. 2021 Feb 2;15(2):026010. doi: 10.1088/1752-7163/abb477.

Abstract

We developed a small portable sensor device using a p-type semiconductor cuprous bromide (CuBr) thin film to measure breath ammonia in real time with highsensitivity and selectivity. Breath ammonia is reportedly associated with chronic liver disease (CLD). We aimed to assess the practical utility of the novel CuBr sensor device for exhaled breath ammonia and the correlation between breath and blood ammonia in CLD patients. This was a feasibility and pilot clinical study of 21 CLD patients and 18 healthy volunteers. Breath ammonia was directly and quickly measured using the novel CuBr sensor device and compared with blood ammonia measured at the same time. CLD patients had significantly higher breath ammonia levels than healthy subjects (p = 1.51 × 10-3), with the level of significance being similar to that for blood ammonia levels (p= 0.024). Significant differences were found in breath and blood ammonia between the healthy and cirrhosis groups (p = 2.97 × 10-3 and 3.76 × 10-3, respectively). Significant, positive correlations between breath and blood ammonia were noted in the CLD group (R = 0.747, p = 1.00 × 10-4), healthy/CLD group (R = 0.741, p = 6.75 × 10-8), and cirrhosis group (R = 0.744, p = 9.52 × 10-4). In conclusion, the newly developed, easy-to-use, and small portable CuBr sensor device was able to non-invasively measure breath ammonia in real time. Breath ammonia measured using the device was correlated with blood ammonia and the presence of liver cirrhosis, and might be an alternative surrogate biomarker to blood ammonia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia
  • Breath Tests
  • Bromides
  • Chronic Disease
  • Feasibility Studies
  • Humans
  • Liver Diseases* / diagnosis
  • Pilot Projects

Substances

  • Bromides
  • Ammonia