Epigenetic modifier directed therapeutics to unleash healthy genes in unhealthy cells

Semin Hematol. 2021 Jan;58(1):1-3. doi: 10.1053/j.seminhematol.2020.11.009. Epub 2020 Dec 14.

Abstract

A common thread through malignant and nonmalignant diseases alerts us to a therapeutic opportunity to seize: disease may originate from genetic mutations, but resulting maladaptive/unhealthy cell fates and functions are mediated by epigenetic enzymes, that are druggable. Epigenetic enzymes modify DNA, and/or the histones around which DNA is organized, to regulate access to genes by the basal transcription factor machinery that transcribes genes. Epigenetic enzymes can be divided usefully into those that facilitate gene transcription ("on" enzymes or coactivators) and those that favor gene repression ("off" enzymes or corepressors). DNA-binding master transcription factors cooperate to recruit coactivators, and repulse corepressors, from thousands of genes, to thereby activate the gene expression programs that define cell fates and functions. In malignancy, this usual exchange of corepressors for coactivators fails, because of mutations to master transcription factors or the coactivators they recruit. Inhibiting corepressor enzymes using small molecules uses pharmacology to redress this coactivator/corepressor imbalance that originates from genetics, to in this way release cancer cells to the terminal lineage-fates intended by their master transcription factor content. Similarly, in nonmalignant β-hemoglobinopathies, inhibiting corepressors exploits transcription factor and lineage-context to activate unmutated fetal over mutated adult globin genes, to thereby treat these nonmalignant genetic diseases. Master transcription factors then are the "natural forces" in the Hippocratic dictum "Natural forces within us are the true healers of disease," and drugging epigenetic enzymes (corepressors) a way to harness these forces to heal.

Keywords: Cancer; Epigenetics; Hemoglobinopathy; Leukemia; Therapy.

Publication types

  • Editorial
  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Differentiation / genetics
  • Epigenesis, Genetic
  • Humans
  • Mutation
  • Neoplasms* / drug therapy
  • Neoplasms* / genetics
  • Neoplasms* / pathology
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • Transcription Factors