Methods for the Synthesis of Endohedral Fullerenes

J Nanosci Nanotechnol. 2021 Apr 1;21(4):2446-2459. doi: 10.1166/jnn.2021.18971.

Abstract

In the present manuscript the authors show the progress recorded regarding the main synthesis methods of metal endo-fullerenes. Shown, that nowadays, the most productive and common method of producing endohedral fullerenes is the electric arc process due to the fact that (a) it is simple enough to introduce atoms into the plasma from solids and gases; (b) its performance is the highest among other methods; (c) gives a wide range of produced types of metallofullerenes in an inert atmosphere-mono-, di-, tri-metalfullerenes, metal carbide clusters, in a reactive atmosphere (N₂, NH₃)-metal nitride and cyanide clusters, heterofullerenes; (d) provides the greatest energy potential, which is likely to allow the introduction into the cells of fullerene molecules metal atoms with higher ionization energies than titanium (≥7 eV). The yield of metal endofullerenes is substantially higher than the "empty" fullerenes. In this case, the stabilization of both metal atoms and fullerene cells occurs. The quantitative and qualitative output of MEF is significantly affected by: (a) conditions of the process in the reactor: the gas pressure, its flow rate, temperature, amperage; the distance between the electrodes, and others, that is, those factors that determine the plasma temperature and the residence time of the reaction particles in it; (b) the composition of solid additives (salts, oxides, metal alloys) in the graphite anode and their quantitative (mol) ratio with carbon; (c) replacement of the inert atmosphere of the synthesis with the active one (helium-with nitrogen, ammonia, water vapor, CO and other gases).