A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors

Elife. 2021 Jan 25:10:e64131. doi: 10.7554/eLife.64131.

Abstract

Homologous recombination (HR) is essential for maintaining genome stability. Although Rad51 is the key protein that drives HR, multiple auxiliary factors interact with Rad51 to potentiate its activity. Here, we present an interdisciplinary characterization of the interactions between Rad51 and these factors. Through structural analysis, we identified an evolutionarily conserved acidic patch of Rad51. The neutralization of this patch completely abolished recombinational DNA repair due to defects in the recruitment of Rad51 to DNA damage sites. This acidic patch was found to be important for the interaction with Rad55-Rad57 and essential for the interaction with Rad52. Furthermore, biochemical reconstitutions demonstrated that neutralization of this acidic patch also impaired the interaction with Rad54, indicating that a single motif is important for the interaction with multiple auxiliary factors. We propose that this patch is a fundamental motif that facilitates interactions with auxiliary factors and is therefore essential for recombinational DNA repair.

Keywords: DNA repair; Rad51; RecA; S. pombe; biochemistry; chemical biology; chromosomes; gene expression; genome stability; recombination; yeast.

Plain language summary

The DNA molecule contains the chemical instructions necessary for life. Its physical integrity is therefore vital, yet it is also under constant threat from external and internal factors. As a result, organisms have evolved an arsenal of mechanisms to repair damaged DNA. For instance, when the two complementary strands that form the DNA molecule are broken at the same location, the cell triggers a mechanism known as homologous recombination. A protein known as Rad51 orchestrates this process, helped by an array of other proteins that include Rad55-Rad57, Rad52, and Rad54. These physically bind to Rad51 and activate it in different ways. However, exactly how these interactions take place remained unclear. To find out more, Afshar et al. examined models of the structure of Rad51, revealing that three of the protein’s building blocks create a prominent, negatively charged patch that could be important for DNA repair. Yeast cells were then genetically manipulated to produce a modified version of Rad51 in which the three building blocks were neutralised. These organisms were unable to repair their DNA. Further biochemical tests showed that the modified protein could no longer attach well to Rad55-Rad57 or Rad54, and could not stick to Rad52 at all. In fact, without its negatively charged patch, Rad51 could not find the ends of broken DNA strands, a process which is normally aided by Rad55-Rad57 and Rad52. Taken together, these results suggest that the helper proteins all interact with Rad51 in the same place, even though they play different roles. Faulty DNA repair processes have been linked to devastating consequences such as cell death or cancer. Understanding the details of DNA repair in yeast can serve as a template for research in more complex organisms, opening the possibility of applications for human health.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Homologous Recombination / genetics*
  • Rad51 Recombinase / genetics*
  • Rad51 Recombinase / metabolism
  • Recombinational DNA Repair / genetics*
  • Schizosaccharomyces / genetics*
  • Schizosaccharomyces / metabolism
  • Schizosaccharomyces pombe Proteins / genetics*
  • Schizosaccharomyces pombe Proteins / metabolism

Substances

  • RHP51 protein, S pombe
  • Schizosaccharomyces pombe Proteins
  • Rad51 Recombinase

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.