High-Performance, Thermal Cycling Stable, Coking-Tolerant Solid Oxide Fuel Cells with Nanostructured Electrodes

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):4993-4999. doi: 10.1021/acsami.0c18434. Epub 2021 Jan 25.

Abstract

Solid oxide fuel cells (SOFCs) are a promising solution to a sustainable energy future. However, cell performance and stability remain a challenge. Durable, nanostructured electrodes fabricated via a simple, cost-effective method are an effective way to address these problems. In this work, both the nanostructured PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) cathode and Ni-Ce0.8Sm0.2O1.9 (SDC) anode are fabricated on a porous yttria-stabilized zirconia (YSZ) backbone via solution infiltration. Symmetrical cells with a configuration of PBSCF|YSZ|PBSCF show a low interfacial polarization resistance of 0.03 Ω cm2 with minimal degradation at 700 °C for 600 h. Ni-SDC|YSZ|PBSCF single cells exhibit a peak power density of 0.62 W cm-2 at 650 °C operated on H2 with good thermal cycling stability for 110 h. Single cells also show excellent coking tolerance with stable operation on CH4 for over 120 h. This work offers a promising pathway toward the development of high-performance and durable SOFCs to be powered by natural gas.

Keywords: coking-tolerance; nanostructured electrodes; solid oxide fuel cells; solution infiltration; thermal cycling stability.