Amino-Functionalised Hybrid Ultramicroporous Materials that Enable Single-Step Ethylene Purification from a Ternary Mixture

Angew Chem Int Ed Engl. 2021 May 3;60(19):10902-10909. doi: 10.1002/anie.202100240. Epub 2021 Apr 1.

Abstract

Pyrazine-linked hybrid ultramicroporous (pore size <7 Å) materials (HUMs) offer benchmark performance for trace carbon capture thanks to strong selectivity for CO2 over small gas molecules, including light hydrocarbons. That the prototypal pyrazine-linked HUMs are amenable to crystal engineering has enabled second generation HUMs to supersede the performance of the parent HUM, SIFSIX-3-Zn, mainly through substitution of the metal and/or the inorganic pillar. Herein, we report that two isostructural aminopyrazine-linked HUMs, MFSIX-17-Ni (17=aminopyrazine; M=Si, Ti), which we had anticipated would offer even stronger affinity for CO2 than their pyrazine analogs, unexpectedly exhibit reduced CO2 affinity but enhanced C2 H2 affinity. MFSIX-17-Ni are consequently the first physisorbents that enable single-step production of polymer-grade ethylene (>99.95 % for SIFSIX-17-Ni) from a ternary equimolar mixture of ethylene, acetylene and CO2 thanks to coadsorption of the latter two gases. We attribute this performance to the very different binding sites in MFSIX-17-Ni versus SIFSIX-3-Zn.

Keywords: coordination networks; crystal engineering; ethylene purification; physisorption; porous materials.