Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction

Front Bioeng Biotechnol. 2021 Jan 8:8:596746. doi: 10.3389/fbioe.2020.596746. eCollection 2020.

Abstract

Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.

Keywords: LINC complex; cell nucleus; mechanosensing; mechanotransduction; nuclear envelope.

Publication types

  • Review