Functional Copolymers Married with Lanthanide(III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5539-5550. doi: 10.1021/acsami.0c19827. Epub 2021 Jan 22.

Abstract

Lanthanide(III)-based luminescent materials have attracted great research interests due to their unique optical, electronic, and chemical characteristics. Up to now, how to extend these materials into large, broad application fields is still a great challenging task. In this contribution, we are intended to present a simple but facile strategy to enhance the luminescence from lanthanide ions and impart lanthanide(III)-based luminescent materials with more applicable properties, leading to meet the requirements from different purposes, such as being used as highly emissive powders, hydrogels, films, and sensitive probes under external stimuli. Herein, a water soluble, blue color emissive, temperature sensitive, and film-processable copolymer (Poly-ligand) was designed and synthesized. Upon complexing with Eu3+ and Tb3+ ions, the red color-emitting Poly-ligand-Eu and green color-emitting Poly-ligand-Tb were produced. After finely tuning the ratios between them, a standard white color emitting Poly-ligand-Eu1:Tb4 (CIE = 0.33 and 0.33) was obtained. Furthermore, the resulted materials not only possessed the emissive luminescent property but also inherited functions from the copolymer of Poly-ligand. Thus, these lanthanide(III)-based materials were used for fingerprint imaging, luminescent soft matters formation, colorful organic light-emitting diode device fabrication, and acid/alkali vapors detection.

Keywords: acid/alkali vapor response; colorful OLED; fingerprint imaging; lanthanide materials; rare earth soft matter; white-light emission.