Density, excess volume, and structure of Fe-Cr-Ni melts

J Chem Phys. 2020 Mar 7;152(9):094501. doi: 10.1063/1.5140787.

Abstract

The relationship between the excess volume and the structure of Fe-Cr-Ni melts is investigated using containerless levitation and in situ high-energy synchrotron x-ray diffraction techniques. The density of six hypoeutectic Fe-Cr-Ni alloys along the 72 wt. % Fe isopleth was measured in the stable and undercooled regions, and the excess volume was evaluated as a function of Cr concentration. It is found that the 72Fe-Cr-Ni alloys exhibit a positive sign of excess volume and the amount increases with increasing Cr concentration. Analysis of the structure factor and pair distribution function of the alloy family reveals that the short-range order in the melt becomes more pronounced with decreasing Cr concentration; this demonstrates a direct correlation between the excess volume and local liquid structure. A characteristic signature of the icosahedral structure is observed in the structure factor of the melts, and the potential origin of the positive excess volume of the 72Fe-Cr-Ni alloys is qualitatively discussed in relation to the icosahedral structure.