CaMKII δ Met281/282 oxidation is not required for recovery of calcium transients during acidosis

Am J Physiol Heart Circ Physiol. 2021 Mar 1;320(3):H1199-H1212. doi: 10.1152/ajpheart.00040.2020. Epub 2021 Jan 15.

Abstract

CaMKII is needed for the recovery of Ca2+ transients during acidosis but also mediates postacidic arrhythmias. CaMKIIδ can sustain its activity following Met281/282 oxidation. Increasing cytosolic Na+ during acidosis as well as postacidic pH normalization should result in prooxidant conditions within the cell favoring oxidative CaMKIIδ activation. We tested whether CaMKIIδ activation through Met281/282 oxidation is involved in recovery of Ca2+ transients during acidosis and promotes cellular arrhythmias post-acidosis. Single cardiac myocytes were isolated from a well-established mouse model in which CaMKIIδ was made resistant to oxidative activation by knock-in replacement of two oxidant-sensitive methionines (Met281/282) with valines (MM-VV). MM-VV myocytes were exposed to extracellular acidosis (pHo 6.5) and compared to wild type (WT) control cells. Full recovery of Ca2+ transients was observed in both WT and MM-VV cardiac myocytes during late-phase acidosis. This was associated with comparably enhanced sarcoplasmic reticulum Ca2+ load and preserved CaMKII specific phosphorylation of phospholamban at Thr17 in MM-VV myocytes. CaMKII was phosphorylated at Thr287, but not Met281/282 oxidized. In line with this, postacidic cellular arrhythmias occurred to a similar extent in WT and MM-VV cells, whereas inhibition of CaMKII using AIP completely prevented recovery of Ca2+ transients during acidosis and attenuated postacidic arrhythmias in MM-VV cells. Using genetically altered cardiomyocytes with cytosolic expression of redox-sensitive green fluorescent protein-2 coupled to glutaredoxin 1, we found that acidosis has a reductive effect within the cytosol of cardiac myocytes despite a significant acidosis-related increase in cytosolic Na+. Our study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for recovery of Ca2+ transients during acidosis nor relevant for postacidic arrhythmogenesis in isolated cardiac myocytes. Acidosis reduces the cytosolic glutathione redox state of isolated cardiac myocytes despite a significant increase in cytosolic Na+. Pharmacological inhibition of global CaMKII activity completely prevents recovery of Ca2+ transients and protects from postacidic arrhythmias in MM-VV myocytes, which confirms the relevance of CaMKII in the context of acidosis.NEW & NOTEWORTHY The current study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for CaMKII-dependent recovery of Ca2+ transients during acidosis nor relevant for the occurrence of postacidic cellular arrhythmias. Despite a usually prooxidant increase in cytosolic Na+, acidosis reduces the cytosolic glutathione redox state within cardiac myocytes. This novel finding suggests that oxidation of cytosolic proteins is less likely to occur during acidosis.

Keywords: CaMKII; acidosis; calcium signaling; excitation-contraction coupling; redox signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acidosis / complications
  • Acidosis / enzymology*
  • Animals
  • Arrhythmias, Cardiac / enzymology*
  • Arrhythmias, Cardiac / etiology
  • Arrhythmias, Cardiac / physiopathology
  • Biosensing Techniques
  • Calcium Signaling*
  • Calcium-Binding Proteins / metabolism
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / genetics
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • Female
  • Glutathione / metabolism
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Heart Rate*
  • Hydrogen-Ion Concentration
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Myocardial Contraction
  • Myocytes, Cardiac / enzymology*
  • Oxidation-Reduction
  • Phosphorylation
  • Reactive Oxygen Species / metabolism

Substances

  • Calcium-Binding Proteins
  • Reactive Oxygen Species
  • phospholamban
  • Green Fluorescent Proteins
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Camk2d protein, mouse
  • Glutathione