Hydride Affinities for Main-Group Hydride Reductants: Assessment of Density Functionals and Trends in Reactivities

J Phys Chem A. 2021 Jan 28;125(3):835-842. doi: 10.1021/acs.jpca.0c10543. Epub 2021 Jan 15.

Abstract

In the present study, we have examined hydride affinities relevant to a range of group 13 and group 14 reductants. We use the high-level W1X-G0, G4(MP2)-XK, and DSD-PBEP86 methods to obtain the RHA42 set of accurate reductant hydride affinities. Assessment of DFT methods with the RHA42 set shows that all functionals that we have examined are fairly accurate. Overall, we find ωB97X-V to be the most accurate. The MN12-SX screened-exchange functional and the nonhybrid B97-D3BJ method also perform well, and they may provide a lower-cost means for obtaining hydride affinities. The trend in the hydride affinities suggests an increased reducing power when one moves down the periodic table, e.g., with TlH3 being a stronger reductant than BH3. We also find that group 13 hydrides are stronger reductants than the group 13 analogues. In general, substitution of a hydrogen, e.g., BH2+ → BHMe+, and the formation of dimer, e.g., BH2+ → B2H5+, also lead to stronger reductants. A notable observation is the small hydride affinities for silyl cations, which are indicative of the potential of silanes as strong reducing agents. In particular, poly(methylhydrosiloxane) (PMHS) cations are associated with especially small hydride affinities owing to the presence of intramolecular oxygen atoms that can stabilize the cation center. We have further found the germanium analogues of the silanes to be more reactive, and they may further widen the scope of main-group hydride reducing agents.