Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design

Nat Commun. 2021 Jan 12;12(1):303. doi: 10.1038/s41467-020-20619-w.

Abstract

The construction of enzyme-inspired artificial catalysts with enzyme-like active sites and microenvironment remains a great challenge. Herein, we report a single-atomic-site Co catalyst supported by carbon doped boron nitride (BCN) with locally polarized B-N bonds (Co SAs/BCN) to simulate the reductive dehalogenases. Density functional theory analysis suggests that the BCN supports, featured with ionic characteristics, provide additional electric field effect compared with graphitic carbon or N-doped carbon (CN), which could facilitate the adsorption of polarized organochlorides. Consistent with the theoretical results, the Co SAs/BCN catalyst delivers a high activity with nearly complete dechlorination (~98%) at a potential of -0.9 V versus Ag/AgCl for chloramphenicol (CAP), showing that the rate constant (k) contributed by unit mass of metal (k/ratio) is 4 and 19 times more active than those of the Co SAs/CN and state-of-the-art Pd/C catalyst, respectively. We show that Co single atoms coupled with BCN host exhibit high stability and selectivity in CAP dechlorination and suppress the competing hydrogen evolution reaction, endowing the Co SAs/BCN as a candidate for sustainable conversion of organic chloride.

Publication types

  • Research Support, Non-U.S. Gov't