Ligand Tailoring Toward an Air-Stable Iron(V) Nitrido Complex

J Am Chem Soc. 2021 Jan 27;143(3):1458-1465. doi: 10.1021/jacs.0c11141. Epub 2021 Jan 12.

Abstract

A new supporting ligand, tris-[2-(3-mesityl-imidazol-2-ylidene)methyl]amine (TIMMNMes), was developed and utilized to isolate an air-stable iron(V) complex bearing a terminal nitrido ligand, which was synthesized by one-electron oxidation from the iron(IV) precursor. Single-crystal X-ray diffraction analyses of both complexes reveal that the metal-centered oxidation is escorted by iron nitride (Fe≡N) bond elongation, which in turn is accompanied by the accommodation of the high-valence iron center closer to the equatorial plane of a trigonal bipyramid. This contrasts with the previous observation of the only other literature-known Fe(IV)≡N/Fe(V)≡N redox pair, namely, [PhB(tBuIm)3FeN]0/+. On the basis of 57Fe Mössbauer, EPR, and UV/vis electronic absorption spectroscopy as well as quantum chemical calculations, we identified the lesser degree of pyramidalization around the iron atom, the Jahn-Teller distortion, and the resulting nature of the SOMO to be the decisive factors at play.