Development of Co-Based Amorphous Composite Coatings Synthesized by Laser Cladding for Neutron Shielding

Materials (Basel). 2021 Jan 7;14(2):279. doi: 10.3390/ma14020279.

Abstract

Advanced amorphous coatings consisting of Co-based metallic glasses with ultrahigh strength (6 GPa) and high microhardness (up to 17 GPa) can significantly improve the surface properties of matrix materials. However, the intrinsic brittleness of Co-based metallic glasses can lead to the initiation of microcracks caused by the inevitable generation of thermal stress during the laser cladding process, which severely limits the potential application. In this paper, the methods of increasing substrate temperature and fabricating composite coatings with the addition of toughened Fe powders were adopted to inhibit the generation of microcracks in the Co55Ta10B35 amorphous coatings. Moreover, neutron shielding performances of the cladding coatings with high B content were investigated with a wide range of neutron energy (wavelength: 0.15-0.85 nm). The results indicate that the fully amorphous coating and composite ones can be fabricated successfully. The increase in the substrate temperature and the addition of Fe powders can effectively inhibit the initiation and propagation of microcracks. The fully Co-based amorphous coating with high B content (35 at.%) can exhibit excellent neutron shielding performance. With the addition of Fe powders, the neutron shielding performance is reduced gradually due to the dilution effect of B in the composite cladding coatings, but the microcrack will be completely restrained.

Keywords: composite coating; crack inhibition; laser cladding; metallic glass; neutron shielding.