Enzymatically Degradable Polyester-Based Adhesives

ACS Biomater Sci Eng. 2015 Oct 12;1(10):971-977. doi: 10.1021/acsbiomaterials.5b00217. Epub 2015 Sep 8.

Abstract

A designed 3,4-dihydroxyphenylalanine (DOPA) mimetic enzymatic degradable synthetic adhesive with good adhesion to soft tissue and metals made by a simple two-step reaction is presented in this article. This adhesive has degradable polycaprolactone-type of repeat units together with glycidyl methacrylate (GMA) and oligo(ethylene glycol) methacrylate (OEGMA) on the polymer backbone. Radical initiated copolymerization of 2-methylene-1,3-dioxepane (MDO), glycidyl methacrylate (GMA) and OEGMA followed by immobilization of catechol group on epoxy rings of GMA provided the adhesive material. Fe(acac)3 was proved to be the most effective cross-linking agent with lap shear strength of 13.13 ± 1.74 kPa and 218.4 ± 16.0 kPa on soft tissue (porcine skin) and metal (aluminum), respectively. The cross-linked adhesive showed good adhesion stability in pH 7 PBS buffer at 37 °C for at least 1 week. Because of the high adhesive strength, enzymatic degradability, and low toxicity, the material is a promising candidate for future studies as medical glue.

Keywords: biodegradable adhesive; catechol; radical polymerization; ring-opening polymerization.