The effect of submersion in different types of water on the survival and eclosion of blow-fly intra-puparial forms (Diptera: Calliphoridae)

Forensic Sci Int. 2021 Feb:319:110663. doi: 10.1016/j.forsciint.2020.110663. Epub 2020 Dec 24.

Abstract

Blow-fly (Diptera: Calliphoridae) immatures are the main colonizers of decomposing remains, and any information on what influences their growth and development are important to forensic entomologists when they are required to estimate post-mortem intervals during a death investigation. Much of this work has been qualified and quantified in terrestrial environments, but is deplete in aquatic environments. When considering a blow-fly's life history, the longest immature life stage goes from the formation of the puparium to adult emergence, and involves metamorphosis. In an aquatic scenario a corpse may be completely submerged, floating on the surface and or it could be associated with water but neither submerged or floating (e.g. beached on a seashore or washed up after a flood event). The present study concerns two blow-fly species, Lucilia sericata (Meigen) and Calliphora vomitoria (L.), and the effects of the age of the intra-puparial forms ("pupal age") and resultant survival, when submerged in tap, river or salt water for varying times - up to 3 days. The experiment was conducted in two localities, L. sericata in Boston USA and C. vomitoria in Turin, Italy, and full puparia of both species were divided into 4 age cohorts ("white", "young", "medium", and "old') before submergence. L. sericata intra-puparial forms showed a three time greater survival rate compared to C. vomitoria intra-puparial forms when submerged in each of the three water types. Both species had the highest survival rate in tap water. Overall, younger and older intra-puparial forms showed a greater and significant survival rate than medium intra-puparial forms when submerged. The eclosion time following submersion of C. vomitoria and L. sericata was mainly influenced by both the age at which the intra-puparial forms were submerged, and by the type of water, but the duration of the submersion also influenced the eclosion time of L. sericata. These results are discussed considering blow-fly physiology. A deeper understanding of the dynamics of survival and growth rate of blow-fly intra-puparial forms on human remains that have undergone a period of submergence could assist in the estimation of the time of death in criminal cases connected to different aquatic environments.

Keywords: Calliphora vomitoria; Lucilia sericata; Pupariation; River water; Salt water; Submersion; Tap water.

MeSH terms

  • Animals
  • Calliphoridae / growth & development*
  • Drinking Water
  • Forensic Entomology
  • Immersion*
  • Larva / growth & development*
  • Pupa / growth & development*
  • Rivers
  • Seawater

Substances

  • Drinking Water