On the potential role of lateral connectivity in retinal anticipation

J Math Neurosci. 2021 Jan 9;11(1):3. doi: 10.1186/s13408-020-00101-z.

Abstract

We analyse the potential effects of lateral connectivity (amacrine cells and gap junctions) on motion anticipation in the retina. Our main result is that lateral connectivity can-under conditions analysed in the paper-trigger a wave of activity enhancing the anticipation mechanism provided by local gain control (Berry et al. in Nature 398(6725):334-338, 1999; Chen et al. in J. Neurosci. 33(1):120-132, 2013). We illustrate these predictions by two examples studied in the experimental literature: differential motion sensitive cells (Baccus and Meister in Neuron 36(5):909-919, 2002) and direction sensitive cells where direction sensitivity is inherited from asymmetry in gap junctions connectivity (Trenholm et al. in Nat. Neurosci. 16:154-156, 2013). We finally present reconstructions of retinal responses to 2D visual inputs to assess the ability of our model to anticipate motion in the case of three different 2D stimuli.

Keywords: 2D; Lateral connectivity; Motion anticipation; Retina.