Decellularized Matrix Produced by Mesenchymal Stem Cells Modulates Growth and Metabolic Activity of Hepatic Cell Cluster

ACS Biomater Sci Eng. 2018 Feb 12;4(2):456-462. doi: 10.1021/acsbiomaterials.7b00494. Epub 2017 Nov 30.

Abstract

Miniature organlike three-dimensional cell clusters often called organoids have emerged as a useful tool for both fundamental and applied bioscience studies. However, there is still a great need to improve the quality of organoids to a level where they exhibit similar biological functionality to an organ. To this end, we hypothesized that a decellularized matrix derived from mesenchymal stem cell (MSC) could regulate the phenotypic and metabolic activity of organoids. This hypothesis was examined by culturing cells of interest in the decellularized matrix of MSCs cultured on a 2D substrate at confluency or in the form of spheroids. The decellularized matrix prepared with MSC spheroids showed a 3D porous structure with a higher content of extracellular matrix molecules than the decellularized matrix derived from MSCs cultured on a 2D substrate. HepG2 hepatocarcinoma cells, which retain the metabolic activity of hepatocytes, were cultured in these decellularized matrices. Interestingly, the decellularized matrix from the MSC spheroids served to develop the hepatic cell clusters with higher levels of E-cadherin-mediated cell-cell adhesion and detoxification activity than the decellularized matrix from the MSCs cultured on a 2D substrate. Overall, the results of this study are useful in improving biological functionality of a wide array of organoids.

Keywords: P450 cytochrome detoxification; cell spheroid; liver organoid; stroma; vascular endothelial growth factor.