Novel Hydrogen Clathrate Hydrate

Phys Rev Lett. 2020 Dec 18;125(25):255702. doi: 10.1103/PhysRevLett.125.255702.

Abstract

We report a new hydrogen clathrate hydrate synthesized at 1.2 GPa and 298 K documented by single-crystal x-ray diffraction, Raman spectroscopy, and first-principles calculations. The oxygen sublattice of the new clathrate hydrate matches that of ice II, while hydrogen molecules are in the ring cavities, which results in the trigonal R3c or R3[over ¯]c space group (proton ordered or disordered, respectively) and the composition of (H_{2}O)_{6}H_{2}. Raman spectroscopy and theoretical calculations reveal a hydrogen disordered nature of the new phase C_{1}^{'}, distinct from the well-known ordered C_{1} clathrate, to which this new structure transforms upon compression and/or cooling. This new clathrate phase can be viewed as a realization of a disordered ice II, unobserved before, in contrast to all other ordered ice structures.