Novel nano network trigonal prismatic Ba2CoO4-deficient BaCoO3 for high-affinity sorption of radiolanthanide elements of biomedical applications: synthesis and sorption studies

Environ Sci Pollut Res Int. 2021 May;28(17):21936-21949. doi: 10.1007/s11356-020-12233-6. Epub 2021 Jan 7.

Abstract

Nano trigonal prismatic Ba2CoO4 with hierarchical structure and deficient BaCoO3 with columnar structure have been prepared at low temperatures (400 [BC4] and 500 [BC5]) °C/3h using green method. X-ray diffraction (XRD) results demonstrate the presence of enriched Ba2CoO4 phase at 400 °C and multiphase structures: BaCoO3, BaCoO3-δ, and Co3O4 with a decrease in the amount of Ba2CoO4 at 500 °C. The prepared powders are characterized by a high specific surface area (SSA) values which are reflected to the mode of synthesis that leads to produce materials with massive active sites. The SSA of BC4 is higher than that of BC5 which can be correlated to the difference in the microstructure analysis of BC4 and BC5 as given from scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) studies. Electron spin resonance (ESR) spectroscopy as an effective method for the characterization of vacancy-rich nanostructures indicates that the presence of oxygen vacancies is related mainly to BaCoO3, BaCoO3-δ, and Co3O4 phases while the effective oxygen vacancies is in BaCoO3 and BaCoO3-δ. The nanocrystalline structures of BC4 and BC5 as novel nano-adsorbents are the first time to be tested. Production of Gd radioisotopes through natGd(n,γ)153,159,161Gd and carrier-free 161Tb through 160Gd(n,γ,) 161Gd [Formula: see text] 161Tb are achieved at 2nd Egyptian nuclear research reactor (ETRR-2). Preliminary sorption study of Gd radioisotopes (represent the lanthanide elements) shows a promising material for the application in the separation and removal of lanthanide elements. The results demonstrated that the fast interaction and efficient sorption of lanthanides ions are based on the novel synthesized nanomaterial that can be considered for the upscale application in this field.

Keywords: Green synthesis; Industrial and medical application; Lanthanide sorption; Novel nanomaterial; Radioisotope separation.

MeSH terms

  • Egypt
  • Nanostructures*
  • Oxygen*
  • X-Ray Diffraction

Substances

  • Oxygen