Optical difference in the frequency domain to suppress disturbance for wearable electronics

Biomed Opt Express. 2020 Nov 5;11(12):6920-6932. doi: 10.1364/BOE.403033. eCollection 2020 Dec 1.

Abstract

Measurements based on optics offer a wide range of unprecedented opportunities in the biological application due to the noninvasive or non-destructive detection. Wearable skin-like optoelectronic devices, capable of deforming with the human skin, play significant roles in future biomedical engineering such as clinical diagnostics or daily healthcare. However, the detected signals based on light intensity are very sensitive to the light path. The performance degradation of the wearable devices occurs due to device deformation or motion artifact. In this work, we propose the optical difference in the frequency domain of signals for suppressing the disturbance generated by wearable device deformation or motion artifact during the photoplethysmogram (PPG) monitoring. The signal processing is simulated with different input waveforms for analyzing the performance of this method. Then we design and fabricate a wearable optoelectronic device to monitor the PPG signal in the condition of motion artifact and use the optical difference in the frequency domain of signals to suppress irregular disturbance. The proposed method reduced the average error in heart rate estimation from 13.04 beats per minute (bpm) to 3.41 bpm in motion and deformation situations. These consequences open up a new prospect for improving the performance of the wearable optoelectronic devices and precise medical monitoring in the future.