Growth Inhibitory and Selective Pressure Effects of Sodium Diacetate on the Spoilage Microbiota of Frankfurters Stored at 4 °C and 12 °C in Vacuum

Foods. 2021 Jan 1;10(1):74. doi: 10.3390/foods10010074.

Abstract

This study evaluated microbial growth in commercial frankfurters formulated with 1.8% sodium lactate (SL) singly or combined with 0.25% sodium diacetate (SDA), vacuum-packaged (VP) and stored at 4 °C and 12 °C. Standard frankfurters without SDA, containing 0.15% SL, served as controls (CN). Lactic acid bacteria (LAB) were the exclusive spoilers in all treatments at both storage temperatures. However, compared to the CN and SL treatments, SL + SDA delayed growth of LAB by an average of 5.1 and 3.1 log units, and 3.0 and 2.0 log units, respectively, after 30 and 60 days at 4 °C. On day 90, the SL + SDA frankfurters were unspoiled whereas the SL and CN frankfurters had spoiled on day 60 and day 30 to 60, respectively. At 12 °C, LAB growth was similar in all treatments after day 15, but strong defects developed in the CN and SL frankfurters only. Differential spoilage patterns were associated with a major reversal of the LAB biota from gas- and slime-producing Leuconostoc mesenteroides and Leuconostoc carnosum in the CN and SL frankfurters to Lactobacillus sakei/curvatus in the SL + SDA frankfurters. Thus, SL + SDA extends the retail shelf life of VP frankfurters by delaying total LAB growth and selecting for lactobacilli with a milder cured meat spoilage potential than leuconostocs, particularly under refrigeration.

Keywords: Lactobacillus sakei; Leuconostoc carnosum; Leuconostoc mesenteroides; frankfurters; lactate; sodium diacetate.