Importance of anthropogenic sources at shaping the antimicrobial resistance profile of a peri-urban mesocarnivore

Sci Total Environ. 2021 Apr 10:764:144166. doi: 10.1016/j.scitotenv.2020.144166. Epub 2021 Jan 2.

Abstract

Anthropogenically derived antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARG) have been detected in wildlife. The likelihood of detecting ARB and ARG in wildlife increases with wildlife exposure to anthropogenic sources of antimicrobial resistance (AMR). Whether anthropogenic sources also increase the risk for AMR to spread in bacteria of wildlife is not well understood. The spread of AMR in bacteria of wildlife can be estimated by examining the richness of ARB and ARG, and the prevalence of ARB that have mobilizable ARG (i.e., ARG that can be transferred across bacteria via plasmids). Here, we investigated whether raccoons (Procyon lotor), with different exposures to anthropogenic sources, differed in prevalence and richness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli, richness of ARG present in ESC-R E. coli, and prevalence of ESC-R E. coli with plasmid-associated ARG. Sampling took place over the course of 10 months at seven sites in Chicago, USA. ESC-R E. coli were isolated from over half of the 211 raccoons sampled and were more likely to be isolated from urban than suburban raccoons. When examining the whole-genome sequences of ESC-R E. coli, 56 sequence types were identified, most of which were associated with the ARG blaCMY and blaCTX-M. A greater richness of ESC-R E. coli sequence types was found at sites with a wastewater treatment plant (WWTP) than without, but no difference was detected based on urban context. ARG richness in ESC-R E. coli did not significantly vary by urban context nor with presence of a WWTP. Importantly, ESC-R E. coli carrying plasmid-associated blaCTX-M and blaCMY ARG were more likely to be isolated from raccoons sampled at sites with a WWTP than without. Our findings indicate that anthropogenic sources may shape the AMR profile of wildlife, reinforcing the need to prevent dissemination of AMR into the environment.

Keywords: Antimicrobial resistance genes; Cephalosporin; Plasmid; Urbanization; Wastewater treatment plant; Wildlife.

MeSH terms

  • Angiotensin Receptor Antagonists
  • Angiotensin-Converting Enzyme Inhibitors
  • Anti-Bacterial Agents* / pharmacology
  • Chicago
  • Drug Resistance, Bacterial
  • Escherichia coli*
  • beta-Lactamases

Substances

  • Angiotensin Receptor Antagonists
  • Angiotensin-Converting Enzyme Inhibitors
  • Anti-Bacterial Agents
  • beta-Lactamases