Immobilization of Dextranase on Nano-Hydroxyapatite as a Recyclable Catalyst

Materials (Basel). 2020 Dec 30;14(1):130. doi: 10.3390/ma14010130.

Abstract

The immobilization technology provides a potential pathway for enzyme recycling. Here, we evaluated the potential of using dextranase immobilized onto hydroxyapatite nanoparticles as a promising inorganic material. The optimal immobilization temperature, reaction time, and pH were determined to be 25 °C, 120 min, and pH 5, respectively. Dextranase could be loaded at 359.7 U/g. The immobilized dextranase was characterized by field emission gun-scanning electron microscope (FEG-SEM), X-ray diffraction (XRD), and Fourier-transformed infrared spectroscopy (FT-IR). The hydrolysis capacity of the immobilized enzyme was maintained at 71% at the 30th time of use. According to the constant temperature acceleration experiment, it was estimated that the immobilized dextranase could be stored for 99 days at 20 °C, indicating that the immobilized enzyme had good storage properties. Sodium chloride and sodium acetic did not desorb the immobilized dextranase. In contrast, dextranase was desorbed by sodium fluoride and sodium citrate. The hydrolysates were 79% oligosaccharides. The immobilized dextranase could significantly and thoroughly remove the dental plaque biofilm. Thus, immobilized dextranase has broad potential application in diverse fields in the future.

Keywords: dextranase; hydroxyapatite; immobilization; plaque removal; recyclable.