Preparation and application of pH-responsive composite hydrogel beads as potential delivery carrier candidates for controlled release of berberine hydrochloride

R Soc Open Sci. 2020 Nov 4;7(11):200676. doi: 10.1098/rsos.200676. eCollection 2020 Nov.

Abstract

For improving the effective concentration of berberine hydrochloride (BH) in the gastrointestinal tract, a series of pH-responsive hydrogel beads were prepared based on carboxymethylstarch-g-poly (acrylic acid)/palygorskite/starch/sodium alginate (CMS-g-PAA/PGS/ST/SA) in the present work. The developed hydrogel beads were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). Effect of palygorskite (PGS) content on the swelling properties of hydrogel beads and BH cumulative release were discussed. The pH responsiveness of hydrogel beads was also investigated in different media. Results illustrated that swelling of hydrogel beads and BH cumulative release from hydrogel beads were obviously affected by PGS content. The swelling ratio and BH cumulative release of composite hydrogel beads remarkably slowed down with PGS content increasing in the range from 10 to 40 wt%. The composite hydrogel beads were pH-responsive. At pH 7.4, the swelling ratio and BH cumulative release from composite hydrogel beads were the fastest among the dissolution media of pH 1.2, pH 6.8 and pH 7.4. The BH cumulative release from hydrogel beads was related to the swelling and relaxation of composite hydrogel beads and could be fitted better by the Higuchi model. The obtained composite hydrogel beads could be potentially used for the development of BH pharmaceutical dosage forms.

Keywords: berberine hydrochloride; carboxymethylstarch; hydrogel beads; palygorskite; sodium alginate.

Associated data

  • figshare/10.6084/m9.figshare.c.5182450