A process-based coupled model of stomatal conductance-photosynthesis-transpiration during leaf ontogeny for water-saving irrigated rice

Photosynth Res. 2021 Feb;147(2):145-160. doi: 10.1007/s11120-020-00797-w. Epub 2021 Jan 3.

Abstract

Process-based coupled model of stomatal conductance-photosynthesis-transpiration was developed to estimate simultaneously stomatal conductance gsw, photosynthetic rate Pn, and transpiration rate Tr during leaf ontogeny. The modified Jarvis model was constructed by superposing the influence of leaf age LA on gsw in traditional Jarvis model. And the modified Farquhar model was constructed by incorporating the relationships of the LA with parameters in Farquhar model into traditional Farquhar model. The average and leaf-age-based coupled models were constructed, respectively, by combining traditional Farquhar and Penman-Monteith models with traditional Jarvis, and combining modified Farquhar and Penman-Monteith models with modified Jarvis. The results showed that the gsw, the maximum rate of carboxylation, maximum rate of electron transport, rate of triose phosphates utilization, and mitochondrial respiration rate varied in a positive skew pattern, while the mesophyll diffusion conductance decreased linearly with increase in LA. The average coupled model underestimated gsw, Pn, and Tr for young leaves and overestimated gsw, Pn, and Tr for old leaves. And the leaf-age-based coupled model generally perfected well in estimating gsw, Pn, and Tr for all leaves during leaf ontogeny. The study will provide basic information for either modeling leaf gsw, Pn, and Tr continuously, or upscaling them from leaf to canopy scale by considering the variation of LA within canopy.

Keywords: Coupled model; Farquhar; Jarvis; Leaf age; Penman–monteith.

MeSH terms

  • Diffusion
  • Electron Transport
  • Mesophyll Cells / physiology
  • Models, Biological
  • Oryza / physiology*
  • Photosynthesis*
  • Plant Leaves / physiology
  • Plant Stomata / physiology
  • Plant Transpiration*
  • Water / metabolism

Substances

  • Water