Radiation-induced reactive oxygen species partially assemble neutrophil NADPH oxidase

Free Radic Biol Med. 2021 Feb 20:164:76-84. doi: 10.1016/j.freeradbiomed.2020.12.233. Epub 2020 Dec 30.

Abstract

Neutrophils are key cells from the innate immune system that destroy invading bacteria or viruses, thanks mainly to the non-mitochondrial reactive oxygen species (ROS) generated by the enzyme NADPH oxidase. Our aim was to study the response of neutrophils to situations of oxidative stress with emphasis on the impact on the NADPH oxidase complex. To mimic oxidative stress, we used gamma irradiation that generated ROS (OH, O2•- and H2O2) in a quantitative controlled manner. We showed that, although irradiation induces shorter half-lives of neutrophil (reduced by at least a factor of 2), it triggers a pre-activation of surviving neutrophils. This is detectable by the production of a small but significant amount of superoxide anions, proportional to the dose (about 3 times that of sham). Investigations at the molecular level showed that this ROS increase was generated by the NADPH oxidase enzyme after neutrophils irradiation. The NADPH oxidase complex undergoes an incomplete assembly which includes p47phox and p67phox but excludes the G-protein Rac. Importantly, this irradiation-induced pre-activation is capable of considerably improving neutrophil reactivity. Indeed, we have observed that this leads to an increase in the production of ROS and the capacity of phagocytosis, leading to the conclusion that radiation induced ROS clearly behave as neutrophil primers.

Keywords: Ionizing radiation; NADPH oxidase; Neutrophils; ROS; Superoxide radical.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Hydrogen Peroxide
  • NADPH Oxidases* / genetics
  • Neutrophils*
  • Phosphoproteins
  • Radiation*
  • Reactive Oxygen Species*
  • Superoxides

Substances

  • Phosphoproteins
  • Reactive Oxygen Species
  • Superoxides
  • Hydrogen Peroxide
  • NADPH Oxidases