Detection of cryptic diversity in lizards (Squamata) from two Biosphere Reserves in Mesoamerica

Comp Cytogenet. 2020 Dec 22;14(4):613-638. doi: 10.3897/CompCytogen.v14i4.57765. eCollection 2020.

Abstract

A combined approach based on karyology and DNA taxonomy allowed us to characterize the taxonomic peculiarities in 10 Mesoamerican lizard species, belonging to six genera and five families, inhabiting two Biosphere Reserve in Chiapas, Mexico: La Sepultura Biosphere Reserve, and Montes Azules Biosphere. The karyotypes of four species, Phyllodactylus sp. 3 (P. tuberculosus species group) (2n = 38), Holcosus festivus (Lichtenstein et von Martens, 1856) (2n = 50), Anolis lemurinus Cope, 1861 (2n = 40), and A. uniformis Cope, 1885 (2n = 29-30) are described for the first time, the last one showing a particular X1X1X2X2/X1X2Y condition. In Aspidoscelis deppii (Wiegmann, 1834) (2n = 50) and Anolis capito Peters, 1863 (2n = 42), we found a different karyotype from the ones previously reported for these species. Moreover, in A. capito, the cytogenetic observation is concurrent with a considerable genetic divergence (9%) at the studied mtDNA marker (MT-ND2), which is indicative of a putative new cryptic species. The skink Scincella cherriei (Cope, 1893), showed high values of genetic divergence (5.2% at 16S gene) between the specimens from Montes Azules and those from Costa Rica and Nicaragua, comparable to the values typical of sister species in skinks. A lower level of genetic divergence, compatible with an intraspecific phylogeographic structure, has been identified in Lepidophyma flavimaculatum Duméril, 1851. These new data identify taxa that urgently require more in-depth taxonomic studies especially in these areas where habitat alteration is proceeding at an alarming rate.

Keywords: Cytotaxomy; DNA; herpetofauna; taxonomy.