Sympathetic activation of splenic T-lymphocytes in hypertension of adult offspring programmed by maternal high fructose exposure

Chin J Physiol. 2020 Nov-Dec;63(6):263-275. doi: 10.4103/CJP.CJP_85_20.

Abstract

Whereas neuroimmune crosstalk between the sympathetic nervous system (SNS) and immune cells in the pathophysiology of hypertension is recognized, the exact effect of SNS on T-lymphocyte in hypertension remains controversial. This study assessed the hypothesis that excitation of the SNS activates splenic T-lymphocytes through redox signaling, leading to the production of pro-inflammatory cytokines and the development of hypertension. Status of T-lymphocyte activation, reactive oxygen species (ROS) production and pro-inflammatory cytokines expression in the spleen were examined in a rodent model of hypertension programmed by maternal high fructose diet (HFD) exposure. Maternal HFD exposure enhanced SNS activity and activated both CD4+ and CD8+ T-lymphocytes in the spleen of young offspring, compared to age-matched offspring exposed to maternal normal diet (ND). Maternal HFD exposure also induced tissue oxidative stress and expression of pro-inflammatory cytokines in the spleen of HFD offspring. All those cellular and molecular events were ameliorated following splenic nerve denervation (SND) by thermoablation. In contrast, activation of splenic sympathetic nerve by nicotine treatment resulted in the enhancement of tissue ROS level and activation of CD4+ and CD8+ T-cells in the spleen of ND offspring; these molecular events were attenuated by treatment with a ROS scavenger, tempol. Finally, the increase in systolic blood pressure (SBP) programmed in adult offspring by maternal HFD exposure was diminished by SND, whereas activation of splenic sympathetic nerve increased basal SBP in young ND offspring. These findings suggest that excitation of the SNS may activate splenic T-lymphocytes, leading to hypertension programming in adult offspring induced by maternal HFD exposure. Moreover, tissue oxidative stress induced by the splenic sympathetic overactivation may serve as a mediator that couples the neuroimmune crosstalk to prime programmed hypertension in HFD offspring.

Keywords: High fructose diet; T-lymphocyte; neuroimmune crosstalk; oxidative stress; pro-inflammatory cytokine; programmed hypertension; spleen; sympathetic nerves.

MeSH terms

  • Blood Pressure
  • CD8-Positive T-Lymphocytes
  • Fructose
  • Humans
  • Hypertension*
  • Spleen*

Substances

  • Fructose