Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system

Opt Express. 2020 Dec 7;28(25):38304-38316. doi: 10.1364/OE.412157.

Abstract

Mid-infrared (mid-IR) lasers have great applications in bio-molecular sensing due to strong vibrational fingerprints in this wavelength range. However, it is a huge challenge to realize mid-IR lasers in conventional silica materials. Here, we demonstrate the generation of mid-IR Raman lasers and Kerr-frequency combs from an all-silica microresonator/fiber laser system. A single wavelength narrow-linewidth laser at ∼2 µm is first realized by using an ultrahigh Q-factor silica whispering-gallery-mode (WGM) microresonator as mode-selection mirror, and thulium-doped silica fiber as gain medium. Due to the strong intensity enhancement in the microresonator itself, multiple third-order nonlinear optical effects are observed, which include stimulated Stokes and anti-Stokes Raman scattering, and (cascaded) four-wave-mixing (FWM). The stimulated Stokes and anti-Stokes Raman scattering shift the initial 2 µm narrow-linewidth laser to as far as ∼2.75 µm and ∼1.56 µm, respectively. While the cascaded FWM helps to form a Kerr-frequency comb with a broad bandwidth of ∼900 nm and a mode spacing of twice of the microresonator free-spectral-range. This work offers a simple and effective route to realize all-silica mid-IR lasers based on enhanced optical nonlinearity in WGM microresonators.