Chaotic constant composition distribution matching for physical layer security in a PS-OFDM-PON

Opt Express. 2020 Dec 21;28(26):39266-39276. doi: 10.1364/OE.413024.

Abstract

This paper proposes a probabilistic shaping orthogonal frequency division multiplexing passive optical network (PS-OFDM-PON) based on chaotic constant composition distribution matching (CCDM). With the implementation of a four-dimensional hyperchaotic Lv system, probabilistic shaping and chaotic encryption are realized with low complexity on the process of signal modulation, so as to enhance the system performance in the presence of bit error rate (BER) and security. An 8.9 Gb/s encrypted PS-16 quadrature amplitude modulation (QAM)-OFDM signal transmission over a 25 km standard single mode fiber (SSMF) is experimentally demonstrated. And experimental results indicate that compared with conventional uniform 16QAM-OFDM, the encrypted PS-16QAM-OFDM can obtain a 1.2 dB gain in receiver sensitivity at a BER of 10-3 under the same bit rate. Moreover, the key space of the proposed scheme is 1.98 × 1073, which is a large enough number to effectively guard against any malicious attacks from illegal optical network units (ONUs). The combined superiority of BER and security performance enables a promising prospect for the proposed PS chaotic encryption scheme in a future low-cost optical access network.