Deep-subwavelength spoof magnetic localized surface plasmon waveguiding over arbitrary bending angles

Opt Express. 2020 Dec 21;28(26):38934-38941. doi: 10.1364/OE.411770.

Abstract

A deep-subwavelength metal spiral structure (MSS) waveguide with arbitrary bending angles was proposed and demonstrated to propagate magnetic localized surface plasmons (MLSPs) in theoretical, simulated and experimental ways. The uniform coupling strengths and frequencies for adjacent MSSs with different azimuthal angles represent a significant advancement in the development of structures supporting MLSPs over arbitrary bending angles. The consistency among spectra, dispersion, and field distributions for five MSSs indicates that backward propagation of MLSPs over arbitrary bending angles is possible. In addition, a long S-chain consisting of adjacent MSSs at various angles holds promise for applications involving long-distance MLSPs waveguides.