Synthesis of α,δ-Disubstituted Tetraphosphates and Terminally-Functionalized Nucleoside Pentaphosphates

J Am Chem Soc. 2021 Jan 13;143(1):463-470. doi: 10.1021/jacs.0c11884. Epub 2020 Dec 29.

Abstract

The anion [P4O11]2-, employed as its bis(triphenylphosphine)iminium (PPN) salt, is shown herein to be a versatile reagent for nucleophile tetraphosphorylation. Treatment under anhydrous conditions with an alkylamine base and a nucleophile (HNuc1), such as an alcohol (neopentanol, cyclohexanol, 4-methylumbelliferone, and Boc-Tyr-OMe), an amine (propargylamine, diethylamine, morpholine, 3,5-dimethylaniline, and isopropylamine), dihydrogen phosphate, phenylphosphonate, azide ion, or methylidene triphenylphosphorane, results in nucleophile substituted tetrametaphosphates ([P4O11Nuc1]3-) as mixed PPN and alkylammonium salts in 59% to 99% yield. Treatment of the resulting functionalized tetrametaphosphates with a second nucleophile (HNuc2), such as hydroxide, a phenol (4-methylumbelliferone), an amine (propargylamine and ethanolamine), fluoride, or a nucleoside monophosphate (uridine monophosphate, deoxyadenosine monophosphate, and adenosine monophosphate), results in ring opening to linear tetraphosphates bearing one nucleophile on each end ([Nuc1(PO3)3PO2Nuc2]4-). When necessary, these linear tetraphosphates are purified by reverse phase or anion exchange HPLC, yielding triethylammonium or ammonium salts in 32% to 92% yield from [PPN]2[P4O11]. Phosphorylation of methylidene triphenylphosphorane as Nuc1 yields a new tetrametaphosphate-based ylide ([Ph3PCHP4O11]3-, 94% yield). Wittig olefination of 2',3'-O-isopropylidene-5'-deoxy-5'-uridylaldehyde using this ylide results in a 3'-deoxy-3',4'-didehydronucleotide derivative, isolated as the triethylammonium salt in 54% yield.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Nucleotides / chemical synthesis*
  • Phosphorylation
  • Polyphosphates / chemical synthesis*

Substances

  • Nucleotides
  • Polyphosphates