Transcriptomics analysis of Ccl2/Cx3cr1/Crb1rd8 deficient mice provides new insights into the pathophysiology of progressive retinal degeneration

Exp Eye Res. 2021 Feb:203:108424. doi: 10.1016/j.exer.2020.108424. Epub 2020 Dec 26.

Abstract

Chronic oxidative stress and immune dysregulation are key mechanisms involved in the pathogenesis of most retinal degenerative diseases, including age-related macular degeneration. The Ccl2-/-/Cx3cr1-/-/Crb1rd8/rd8 mouse model develops a progressive degeneration phenotype, with photoreceptor atrophy, drusen-like lesions or pigment alterations at an early age; however, the role of oxidative stress and immune function in the pathogenesis of the model is poorly understood. We performed a comprehensive characterization of the Ccl2-/-/Cx3cr1-/-/Crb1rd8/rd8 mouse to evaluate how these pathways influence pathogenesis. We generated a Ccl2-/-/Cx3cr1-/- double-knockout (DKO) mouse on a C57BL/6N background (with the rd8 mutation of the Crb1 gene), assessed its retina status and function during 9 months in both in vivo and post-mortem analysis, and performed a comprehensive transcriptomic analysis. DKOrd8 mice presented focal retinal lesions with increased infiltration of microglia and involvement of Müller cells. Lesions progressed to thinning of the photoreceptor nuclear layer, causing a loss in retinal function. Transcriptomics analysis revealed major differential expression of genes involved in oxidative stress and neuronal function, in particular genes related to the mitochondrial electron transport chain and antioxidant cellular response. Our results suggest that alterations in chemokine signaling combined with the rd8 mutation in Ccl2-/-/Cx3cr1-/-/Crb1rd8/rd8 mice involve early changes in several pathways associated with age-related macular degeneration, highlighting the relevance of these processes in the pathological retinal degeneration in the DKOrd8 model.

Keywords: Atrophy; Chemokine signaling; Mouse model; Oxidative stress; Photoreceptors; Retinal degeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • CX3C Chemokine Receptor 1 / genetics*
  • Chemokine CCL2 / genetics*
  • Disease Models, Animal
  • Electroretinography
  • Gene Expression Regulation / physiology
  • Genotyping Techniques
  • Macrophages / pathology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microglia / pathology
  • Nerve Tissue Proteins / genetics*
  • Retina / physiopathology
  • Retinal Degeneration / genetics*
  • Retinal Degeneration / physiopathology*
  • Retinal Pigment Epithelium / pathology
  • Tomography, Optical Coherence
  • Transcriptome / genetics*

Substances

  • CX3C Chemokine Receptor 1
  • Ccl2 protein, mouse
  • Chemokine CCL2
  • Crb1 protein, mouse
  • Cx3cr1 protein, mouse
  • Nerve Tissue Proteins