An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems

IEEE Trans Cybern. 2022 Jul;52(7):5999-6012. doi: 10.1109/TCYB.2020.3041494. Epub 2022 Jul 4.

Abstract

This article addresses a novel scheduling problem, a distributed flowshop group scheduling problem, which has important applications in modern manufacturing systems. The problem considers how to arrange a variety of jobs subject to group constraints at a number of identical manufacturing cellulars, each one with a flowshop structure, with the objective of minimizing makespan. We explore the problem-specific knowledge and present a mixed-integer linear programming model, a counterintuitive paradox, and two suites of accelerations to save computational efforts. Due to the complexity of the problem, we consider a decomposition strategy and propose a cooperative co-evolutionary algorithm (CCEA) with a novel collaboration model and a reinitialization scheme. A comprehensive and thorough computational and statistical campaign is carried out. The results show that the proposed collaboration model and reinitialization scheme are very effective. The proposed CCEA outperforms a number of metaheuristics adapted from closely related scheduling problems in the literature by a significantly considerable margin.