Regulating Constraint-Following Bound for Fuzzy Mechanical Systems: Indirect Robust Control and Fuzzy Optimal Design

IEEE Trans Cybern. 2022 Jul;52(7):5868-5881. doi: 10.1109/TCYB.2020.3040680. Epub 2022 Jul 4.

Abstract

This article proposes an optimal indirect approach of constraint-following control for fuzzy mechanical systems. The system contains (possibly fast) time-varying uncertainty that lies in a fuzzy set. It aims at an optimal controller for the system to render bounded constraint-following error such that it can stay within a predetermined bound at all time and be sufficiently small eventually. First, for deterministic performance, the original system is transformed into a constructed system. A deterministic (not the usual IF-THEN rules-based) robust control is then designed for the constructed system to render it to be uniformly bounded and uniformly ultimately bounded, regardless of the uncertainty. Second, for optimal performance, a performance index, including the average fuzzy system performance and control effort, is proposed based on the fuzzy information. An optimal design problem associated with the control gain is then formulated and solved by minimizing the performance index. Finally, it is proved when the constructed system renders uniform boundedness and uniform ultimate boundedness, the original system achieves the desired performance of bounded constraint following.