Smart Control for Water Droplets on Temperature and Force Dual-Responsive Slippery Surfaces

Langmuir. 2021 Jan 12;37(1):578-584. doi: 10.1021/acs.langmuir.0c03308. Epub 2020 Dec 28.

Abstract

Responsive slippery lubricant-infused porous surfaces (SLIPSs), featuring excellent liquid repelling/sliding capabilities in response to external stimuli, have attracted great attention in smart droplet manipulations. However, most of the reported responsive SLIPSs function under a single stimulus. Here, we report a kind of smart slippery surface capable of on-demand control between sliding and pinning for water droplets via alternately freezing/thawing the stretchable polydimethylsiloxane sheet in different strains. Diverse parameters are quantified to investigate the critical sliding volume of the droplet, including lubricant infusion amount, laser-scanning power, and pillar spacing. By virtue of the cooperation of temperature and force fields acting on the SLIPS, we demonstrate the intriguing applications including controllable chemical reaction and on-demand electrical circuit control. We envision that this dual-responsive surface should provide more possibilities in smart control of microscale droplets, especially in active vaccine-involved biochemical microreactions where a lower temperature is highly favored.

Publication types

  • Research Support, Non-U.S. Gov't