High-order mode conversion in a few-mode fiber via laser-inscribed long-period gratings at 1.55 µm and 2 µm wavebands

Appl Opt. 2020 Dec 1;59(34):10688-10694. doi: 10.1364/AO.408782.

Abstract

We demonstrate high-order mode conversion in a few-mode fiber (FMF) via CO2 laser inscribed long-period fiber gratings (LPFGs) at both the 1.55 µm and 2 µm wavebands. At the 1.55 µm waveband, five high-order core modes (the LP11, LP21, LP02, LP31, and LP12 modes) can be coupled from the LP01 mode with high efficiency by the FMF-LPFGs. The orbital angular momentum beams with different topological charges (±1,±2,±3) are experimentally generated by adjusting the polarization controllers. At the 2 µm waveband, three high-order modes (the LP11, LP21, and LP02 mode) can be coupled by the FMF-LPFGs with different grating periods. The proposed LPFG-based mode converters could have a potential prospects in mode-division multiplexing and multiwindow broadband optical communication applications.