Reinforcing Magnetorheological Fluids with Highly Anisotropic 2D Materials

Chemphyschem. 2021 Mar 3;22(5):435-440. doi: 10.1002/cphc.202000948. Epub 2021 Jan 21.

Abstract

Magnetorheological fluids (MRF) are suspensions of magnetic particles that solidify in the presence of a magnetic field. While non-magnetic additives could improve MRF performance, explorations into such additives have not coalesced into an understanding of their influence, and particularly the role of additive morphology. Here, we explore α-Ni(OH)2 2D sheets, with aspect ratios of ∼25,000, as highly anisotropic MRF additives. Experiments studying pressure-driven flow of an MRF with and without these sheets show that their addition can increase the saturation pressure by as much as 46 %. However, shear-mode rheology reveals that they can also weaken the MRF by inhibiting the chaining of the iron particles at low field strengths and have no effect at higher field strengths. In order to reconcile the strikingly different results, we propose that 2D materials introduce a non-Newtonian handle to modify smart fluids in a manner that depends on the curvature of the shearing strain rate profile. Specifically, we identify a modification to the Buckingham-Reiner model of pressure-driven flow for a Bingham plastic in which the sheets widen the solidified plug. This work highlights the subtle interaction between particles in smart fluids and flows while emphasizing the opportunity for using anisotropy to tune this interaction.

Keywords: 2D materials; Bingham plastic; magnetorheological fluids; smart fluids; suspensions.