3'RNA Sequencing Accurately Classifies Formalin-Fixed Paraffin-Embedded Uterine Leiomyomas

Cancers (Basel). 2020 Dec 19;12(12):3839. doi: 10.3390/cancers12123839.

Abstract

Uterine leiomyomas are benign smooth muscle tumors occurring in 70% of women of reproductive age. The majority of leiomyomas harbor one of three well-established genetic changes: a hotspot mutation in MED12, overexpression of HMGA2, or biallelic loss of FH. The majority of studies have classified leiomyomas by complex and costly methods, such as whole-genome sequencing, or by combining multiple traditional methods, such as immunohistochemistry and Sanger sequencing. The type of specimens and the amount of resources available often determine the choice. A more universal, cost-effective, and scalable method for classifying leiomyomas is needed. The aim of this study was to evaluate whether RNA sequencing can accurately classify formalin-fixed paraffin-embedded (FFPE) leiomyomas. We performed 3'RNA sequencing with 44 leiomyoma and 5 myometrium FFPE samples, revealing that the samples clustered according to the mutation status of MED12, HMGA2, and FH. Furthermore, we confirmed each subtype in a publicly available fresh frozen dataset. These results indicate that a targeted 3'RNA sequencing panel could serve as a cost-effective and robust tool for stratifying both fresh frozen and FFPE leiomyomas. This study also highlights 3'RNA sequencing as a promising method for studying the abundance of unexploited tissue material that is routinely stored in hospital archives.

Keywords: 3′RNA sequencing; FFPE; FH; HMGA2; MED12; QuantSeq; fibroids.