A Microwave Three-Dimensional Imaging Method Based on Optimal Wave Spectrum Reconstruction

Sensors (Basel). 2020 Dec 19;20(24):7306. doi: 10.3390/s20247306.

Abstract

Limited by the Shannon-Nyquist sampling law, the number of antenna elements and echo signal data of the traditional microwave three-dimensional (3D) imaging system are extremely high. Compressed sensing imaging methods based on sparse representation of target scene can reduce the data sampling rate, but the dictionary matrix of these methods takes a lot of memory, and the imaging has poor quality for continuously distributed targets. For the above problems, a microwave 3D imaging method based on optimal wave spectrum reconstruction and optimization with target reflectance gradient is proposed in this paper. Based on the analysis of the spatial distribution characteristics of the target echo in the frequency domain, this method constructs an orthogonal projection reconstruction model for the wavefront to realize the optimal reconstruction of the target wave spectrum. Then, the inverse Fourier transform of the optimal target wave spectrum is optimized according to the law of the target reflectance gradient distribution. The proposed method has the advantages of less memory space and less computation time. What is more, the method has a better imaging quality for the continuously distributed target. The computer simulation experiment and microwave anechoic chamber measurement experiment verify the effectiveness of the proposed method.

Keywords: 3D imaging; continuously distributed target; microwave imaging; sparse reconstruction; wave spectrum reconstruction.