The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses

Plants (Basel). 2020 Dec 15;9(12):1779. doi: 10.3390/plants9121779.

Abstract

It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as 'quasi-essential', the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk. To this end, we discuss the gap in Si nutrition and propose a working model to explain the responses of individual MaN or MiN disorders and their mutual responses to Si supplementation.

Keywords: abiotic stress tolerance; biotechnology and soil science; plant nutrition.

Publication types

  • Review